179 research outputs found

    Mitigating demand-capacity unbalances through interairline slot trading

    Get PDF
    When airspace capacity is reduced, some flights may be delayed through the allocation of air traffic flow management slots, in accordance with the FPFS rule. Although this reassignment seems the natural way to handle such a situation, the fact that different flights have generally different economical values suggests that other reallocation mechanisms may provide more convenient solutions from the airlines’ cost perspective. For instance, each airline could propose a set of slot swap offers, with the Network Manager (NM) playing the role of the mediator and deciding which offers to match. However, this mechanism requires a huge effort from the airlines to evaluate all possible offer combinations, a number which is exponentially growing with the size of their fleet. In addition, all airlines make their offers simply relying on their flights and their current schedule, without the possibility to fully exploit what is available on the market, as they have no information regarding other airlines’ offers. With our Inter-airline Slot Swap Offer Provider model, we aim to invert this process: we allow airlines to assign preferences to their flights and let the NM instead to play the role of the airlines’ broker, who, based on the preferences and ensuring no negative impact to all airlines, provides a set of ready-made offers that each airline can decide either to accept or refuse. Hence, a slot trade is represented by the matching of several offers of different airlines; if all the offers defining a trade are accepted then the corresponding slot swap eventually takes place, otherwise all the flights involved in the trade keep their initial position in the schedule

    Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review

    Get PDF
    Objective: Several focal muscle vibration (fMV) and whole body vibration (WBV) protocols have been designed to promote brain reorganization processes in patients with stroke. However, whether fMV and WBV should be considered helpful tools to promote post-stroke recovery remains still largely unclear. Methods: We here achieve a comprehensive review of the application of fMV and WBV to promote brain reorganization processes in patients with stroke. By first discussing the putative physiological basis of fMV and WBV and then examining previous observations achieved in recent randomized controlled trials (RCT) in patients with stroke, we critically discuss possible strength and limitations of the currently available data. Results: We provide the first systematic assessment of fMV studies demonstrating some improvement in upper and lower limb functions, in patients with chronic stroke. We also confirm and expand previous considerations about the rather limited rationale for the application of current WBV protocols in patients with chronic stroke. Conclusion: Based on available information, we propose new recommendations for optimal stimulation parameters and strategies for recruitment of specific stroke populations that would more likely benefit from future fMV or WBV application, in terms of speed and amount of post-stroke functional recovery

    Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study

    Get PDF
    Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and long-lasting motor recovery in chronic stroke patients. Those structural and functional changes within the motor network underlying motor recovery occur in the very first hours after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet to be determined. The aim of this randomized double-blind sham-controlled study is to investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out of 22 acute stroke patients, 10 were treated with the rMV (vibration group–VG), while 12 underwent the sham treatment (control group–CG). Both treatments were carried out for 3 consecutive days, starting within 72 h of stroke onset; each daily session consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy). The transducer was applied perpendicular to the target muscle's belly, near its distal tendon insertion, generating a 0.2–0.5 mm peak-to-peak sinusoidal displacement at a frequency of 100 Hz. All participants also underwent a daily standard rehabilitation program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov NCT03697525) and written informed consent was obtained from all of the participants. With regard to the different pre-treatment clinical statuses, VG patients showed significant clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001), Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the upper and lower limb scales scores were compared between the two groups, VG patients were found to have a better clinical improvement at all the clinical end points. This study provides the first evidence that rMV is able to improve the motor outcome in a cohort of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a valid complementary non-pharmacological therapy to promote motor recovery in acute stroke patients

    Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration

    Get PDF
    The spinal cord spinal cord has in the past been considered a hardwired system which responds to inputs in a stereotyped way. A growing body of data have instead demonstrated its ability to retain information and modify its effector capabilities, showing activity-dependent plasticity. Whereas, plasticity in the spinal cord is well documented after different forms of physical exercise, whether exogenous stimulation can induce similar changes is still a matter of debate. This issue is both of scientific and clinical relevance, since at least one form of stimulation, i.e., focal muscle vibration (fMV), is currently used as a treatment for spasticity. The aim of the present study was to assess whether fMV can induce plasticity at the SC level when applied to different muscles of the upper limb. Changes in different electrophysiological measures, such as H-reflex testing homonymous and heteronymous pathways, reciprocal inhibition and somatosensory evoked potentials were used as outcomes. We found that fMV was able to induce long-term depression-like plasticity in specific spinal cord circuits depending on the muscle vibrated. These findings helped understand the basic mechanisms underlying the effects of fMV and might help to develop more advanced stimulation protocols

    Corrigendum: Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration

    Get PDF
    Corrigendum: Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration by Rocchi, L., Suppa, A., Leodori, G., Celletti, C., Camerota, F., Rothwell, J., et al. (2018). Front. Neurol. 9:935. doi: 10.3389/fneur.2018.00935

    Frequency of left ventricular hypertrophy in non-valvular atrial fibrillation

    Get PDF
    Left ventricular hypertrophy (LVH) is significantly related to adverse clinical outcomes in patients at high risk of cardiovascular events. In patients with atrial fibrillation (AF), data on LVH, that is, prevalence and determinants, are inconsistent mainly because of different definitions and heterogeneity of study populations. We determined echocardiographic-based LVH prevalence and clinical factors independently associated with its development in a prospective cohort of patients with non-valvular (NV) AF. From the "Atrial Fibrillation Registry for Ankle-brachial Index Prevalence Assessment: Collaborative Italian Study" (ARAPACIS) population, 1,184 patients with NVAF (mean age 72 \ub1 11 years; 56% men) with complete data to define LVH were selected. ARAPACIS is a multicenter, observational, prospective, longitudinal on-going study designed to estimate prevalence of peripheral artery disease in patients with NVAF. We found a high prevalence of LVH (52%) in patients with NVAF. Compared to those without LVH, patients with AF with LVH were older and had a higher prevalence of hypertension, diabetes, and previous myocardial infarction (MI). A higher prevalence of ankle-brachial index 640.90 was seen in patients with LVH (22 vs 17%, p = 0.0392). Patients with LVH were at significantly higher thromboembolic risk, with CHA2DS2-VASc 652 seen in 93% of LVH and in 73% of patients without LVH (p <0.05). Women with LVH had a higher prevalence of concentric hypertrophy than men (46% vs 29%, p = 0.0003). Logistic regression analysis demonstrated that female gender (odds ratio [OR] 2.80, p <0.0001), age (OR 1.03 per year, p <0.001), hypertension (OR 2.30, p <0.001), diabetes (OR 1.62, p = 0.004), and previous MI (OR 1.96, p = 0.001) were independently associated with LVH. In conclusion, patients with NVAF have a high prevalence of LVH, which is related to female gender, older age, hypertension, and previous MI. These patients are at high thromboembolic risk and deserve a holistic approach to cardiovascular prevention

    Rate and duration of hospitalisation for acute pulmonary embolism in the real-world clinical practice of different countries : Analysis from the RIETE registry

    Get PDF
    publishersversionPeer reviewe
    corecore